Welcome to BlogDogIt Tuesday, May 21 2024 @ 07:19 pm EDT

The Evolution Of An "Hello World"

  • Contributed by:
  • Views: 3,850
Hello World - Click For Wallpaper Image
Image Source: kaythaya.com


Source: Ferry Boender, ElectricMonk.nl License

Evolutionary Algorithm: Evolving "Hello, World!"

On the Origin of Circuits over at DamnInteresting.com. I always wanted to try something like that out for myself, but never really found the time. Now I have, and I think I've found some interesting results.

Disclaimer: I know next to nothing about Evolutionary Algorithms. Everything you read in here is the product of my own imagination and tests. I may use the wrong algorithms, nomenclature, methodology and might just be getting very bad results. They are, however, interesting to me, and I do know something about evolution, so here it is anyway.

How Evolution Works

So, how does an Evolutionary Algorithm work? Why, the same as normal biological evolution, mostly! Very (very) simply said, organism consist of DNA, which determine their characteristics. When organisms reproduce, there is a chance their offspring's DNA contains a mutation, which can lead to difference in characteristics. Sufficiently negative changes in offspring make that offspring less fit to survive, causing it, and the mutation, to die out eventually. Positive changes are passed on to future offspring. So through evolution an set of DNA naturally tends to grow towards its "goal", which is ultimate fitness for its environment. Now this is not an entirely correct description, but for our purposes it is good enough.

A simple evolutionary algorithm

There is nothing stopping us from using the same technique to evolve things towards goals set by a programmer. As can be seen from the Antenna example in the DamnInteresting article, this can sometimes even produce better things than engineers can come up with. In this post, I'm going to evolve the string "Hello, World!" from random garbage. The first example won't be very interesting, but it demonstrates the concept rather well.

First, lets define our starting point and end goal:

source = "jiKnp4bqpmAbp"
target = "Hello, World!"

Our evolutionary algorithm will start with "jiKnp4bqpmAbp", which we can view as the DNA of our "organism". It will then randomly mutate some of the DNA, and judge the new mutated string's fitness. But how do we determine fitness? This is probably the most difficult part of any evolutionary algorithm.

Lucky for us, there's an easy way to do this with strings. All we have to do is take the value of each character in the mutated string, and see how much it differs from the same character in the target string. We then add all those differences, which leads us to a single value which is the fitness of that string. A fitness of 0 is perfect, and means that both strings are exactly the same. A fitness of 1 means one of the characters is off by one. For instance, the strings "Hfllo" and "Hdllo" both have a fitness of one. The higher the fitness number, the less fit it actually is!

Here's the fitness function.

- - - - - - - - - - - >
def fitness(source, target):
   fitval = 0
   for i in range(0, len(source)):
      fitval += (ord(target[i]) - ord(source[i])) ** 2

If you look closely, you'll notice that for each character, I square the difference. This is to to put extra emphasis on larger differences. If we don't do this, the string "Hannp" would have a fitness of 0. You see, the difference between 'e' and 'a' is -5, between 'l' and 'n' is +2 (which we have twice) and between 'o' and 'p' is +1. Adding these up yields a fitness of 0, but it's not the string we want at all. If we square the differences, they become 25, 4, 4 and 1, which yields a fitness of 34. Effectively, we square each difference so that they can't cancel each other out.

Now we need to introduce mutations into our string. This is rather easy. We simply pick a random character in the string, and either increment or decrease it by one, or leave it alone:

def mutate(source):
   charpos = random.randint(0, len(source) - 1)
   parts = list(source)
   parts[charpos] = chr(ord(parts[charpos]) + random.randint(-1,1))

Time to tie the whole shabang together!

fitval = fitness(source, target)
i = 0
while True:
   i += 1
   m = mutate(source)
   fitval_m = fitness(m, target)
   if fitval_m < fitval:
      fitval = fitval_m
      source = m
      print "%5i %5i %14s" % (i, fitval_m, m)
   if fitval == 0:

This should be easy enough to understand. For each iteration of the While-loop, we mutate the string and then calculate its fitness. If it is fitter then the original string (the parent), we make the child the new string. Otherwise, we throw it away. If the fitness is 0, we're done!

Lets look at some output. I'm snipping out some intermediary output cause it's not terribly interesting.

At generation 1, we have a fitness of 15491, and the string looks nothing like "Hello, World!". The same for generation 20, 40, 60, etc.

    1 15491  jjKnp4bqpmAbp
   20 15400  jiKnp3bppoAbp
   40 15377  jiKlo2bpooAdp
   60 15130  iiKlo2aoooAdp

Not much progress so far. At generation 500 it's still a load of nonsense:

  500  9986  eTlo,YaorNdf

Generation 1200, we start to see something that looks like "Hello, World!":

 1200  4186  Heglo,LWorhdP

Generation 1500, we're getting very close!

 1500  3370  Hello,GWorldL

It still takes a good 1500 generations more before we're finally there:

 3078     2  Hello, Vorld"
 3079     2  Hfllo, World"
 3080     2  Hfllo, World"
 3081     0  Hello, World!

There it is!

A better, more interesting, algorithm

Okay, so that worked. But... it was kinda lame. Nothing interesting to see, really, was there? That's because our algorithm was a little too simplistic. Only one "organism" in the gene pool, only one character mutated at any time. We can do better than that, so let's modify the program to make it more interesting.

We're not going to touch our fitness function, since that works rather well. Instead, lets introduce a genepool. Instead of having only one string, why not have a whole bunch or randomly generated strings and let them duke it out among themselves. That sounds a bit more real-life, doesn't it?

genepool = []
for i in range(0, GENSIZE):
   dna = [random.choice(string.printable[:-5]) for j in range(0, len(target))]
   fitness = calc_fitness(dna, target)
   candidate = {'dna': dna, 'fitness': fitness }

This little snippet generates a genepool with 20 random strings and their fitnesses.

Now, lets modify our mutation function. Instead of mutating one single character, we feed it two parents, picked at random from the genepool, and it will mix their DNA together a bit. It will also randomly mutate one character in the resulting DNA. It then returns the newly fabricated child, including its fitness.

def mutate(parent1, parent2):
   child_dna = parent1['dna'][:]

   # Mix both DNAs
   start = random.randint(0, len(parent2['dna']) - 1)
   stop = random.randint(0, len(parent2['dna']) - 1)
   if start > stop:
      stop, start = start, stop
   child_dna[start:stop] = parent2['dna'][start:stop]

   # Mutate one position
   charpos = random.randint(0, len(child_dna) - 1)
   child_dna[charpos] = chr(ord(child_dna[charpos]) + random.randint(-1,1))
   child_fitness = calc_fitness(child_dna, target)
   return({'dna': child_dna, 'fitness': child_fitness})

We also need a routine to pick two random parents from the genepool. Now, we could just pick them completely random, but what you really want is for parents with a good fitness to have a better chance of offspring. If we sort the genepool list by fitness, we can use a uniform product distribution to make sure that parents with better fitness get chosen more often.

Now you might ask, what the hell is a uniform product distribution? When you randomly pick a number between, say, one and ten, each number has the same chance of being picked. This is called a "uniform distribution". But when you pick two random numbers, and you multiply them, there's a much bigger chance of getting a bigger number than a smaller number. Hence the name "uniform product distribution". Here's how that looks:

So our random parent picker will do just that. We select two random real numbers between 0 and 1, multiple those two random numbers and then scale the result up to our poolsize by multiplying the result with the size of the pool. We return that parent from the pool.

def random_parent(genepool):
   wRndNr = random.random() * random.random() * (GENSIZE - 1)
   wRndNr = int(wRndNr)

There! Now it's time for our main loop

while True:
   genepool.sort(key=lambda candidate: candidate['fitness'])

   if genepool[0]['fitness'] == 0:
      # Target reached

   parent1 = random_parent(genepool)
   parent2 = random_parent(genepool)

   child = mutate(parent1, parent2)
   if child['fitness'] < genepool[-1]['fitness']:
      genepool[-1] = child

For each iteration of the While True loop, we first sort the genepool by fitness so that the most fit parents are at the top. We check to see if the fittest happens to be the target string we're looking for. If so, we stop the loop.

Then we select two parents from the genepool using the uniform product distribution so that fitter parents are chosen more often. We create a bastard mutated child that will mix both parents' DNA together and introduce a little mutation. If the new child is more fit than the worst in the genepool, it will replace that degenerate one in the genepool. In the next iteration, the pool is sorted again on fitness so that the new child takes its rightful place.


Now it's time to run this puppy and see what it does. Again, I snip out some of the less interesting stuff.

Here's the genepool in the beginning. The first number is the generation (the number of times the While-loop has run), the second number the fitness and the third column is the DNA for that entry in the genepool.

     1   7617   'iSx{$,K`u~(B
     1   9284   SQf`1N#UdrPlT
     1  12837   sYIu<E"Fq'^_.
     1  15531   DC8Dg1I$*mUs-
     1  16064   L~*}JBVdF7bu2
     1  16533   1,XU%)5$q[YuO
     1  16588   ff],ceW<0fud&
     1  17316   [V3@2'VgY{KV
     1  17356   kWw#v/P<#apG9
     1  17581   <Lrh(1hN_Bd)3
     1  18777   TM]_]TbtxFY:q
     1  19656   $zS+EI?BS>%z(
     1  19841   =S;B~((W8 D,6
     1  20398   P_A$D|NPJPio/
     1  21957   J&f=O:g8'{S2
     1  22543   5*T2c"pMZ80L'
     1  24954   A&lZ#A_}MxI"P
     1  25186   &9MrI|0&x)q,N
     1  28110   OlXT/Q{y3{"LR
     1  29656   8WB99hx%0]}h[

One big random jumbled mess. Note the ones I've emphasized. These are the parents that were selected for the new child in the next generation. Lets see how it looks after one generation:

     2   7617   'iSx{$,K`u~(B
     2   8742   SQf`1N#UdfumT
     2   9284   SQf`1N#UdrPlT
     2  12837   sYIu<E"Fq'^_.
     2  15531   DC8Dg1I$*mUs-
     2  16064   L~*}JBVdF7bu2
     2  16533   1,XU%)5$q[YuO
     2  16588   ff],ceW<0fud&
     2  17316   [V3@2'VgY{KV
     2  17356   kWw#v/P>#apG9
     2  17581   <Lrh(1hN_Bd)3
     2  18777   TM]_]TbtxFY:q
     2  19656   $zS+EI?BS>%z(
     2  19841   =S;B~((W8 D,6
     2  20398   P_A$D|NPJPio/
     2  21957   J&f=O:g8'{S2
     2  22543   5*T2c"pMZ80L'
     2  24954   A&lZ#A_}MxI"P
     2  25186   &9MrI|0&x)q,N
     2  28110   OlXT/Q{y3{"LR

Two random parents from the previous generation have their DNA mixed, and have generated an offspring (the bold one) which is better then both of them. It comes in second with a fitness of 8742, while its parents only had fitness of 9284 and 16588. Lets skip ahead a bit and look at the 6th generation:

     6   7617   'iSx{$,K`u~(B
     6   8742   SQf`1N#UdfumT
     6   9284   SQf`1N#UdrPlT
     6  10198   SQfD1N#UdfumT
     6  12837   sYIu<E"Fq'^_.
     6  15531   DC8Dg1I$*mUs-
     6  16064   L~*}JBVdF7bu2
     6  16387   SQf`1N"MZ80LT
     6  16533   1,XU%)5$q[YuO
     6  16588   ff],ceW<0fud&

     6  17316   [V3@2'VgY{KV
     6  17356   kWw#v/P>#apG9
     6  17356   kWw#v/P>#apG9
     6  17581   <Lrh(1hN_Bd)3
     6  18777   TM]_]TbtxFY:q
     6  19656   $zS+EI?BS>%z(
     6  19841   =S;B~((W8 D,6
     6  20287   fe],1eW<0fud&
     6  20398   P_A$D|NPJPio/
     6  21957   J&f=O:g8'{S2

As you can see, the "SQf" has reproduced again with success, and there are now four variants of it in the genepool. We also note the "kWw#", which there are two identical ones of. This can happen when the entire DNA of one parent is copied and no mutation occurs. In our mutate function, we use the first parent's DNA as a base and then randomly overlay some of the seconds parent's DNA. This can anything from the entire second parent's DNA, or nothing at all. But generally, the chance is higher that the first parent's DNA survives largely in tact.

The next interesting generation is 13:

    13   4204   RQf`{$,KdfumT
    13   7617   'iSx{$,K`u~(B
    13   7617   'iSx{$,K`u~(B
    13   8742   SQf`1N#UdfumT
    13   8742   SQf`1N#UdfumT
    13   9284   SQf`1N#UdrPlT
    13   9284   SQf`1N#UdrPlT
    13  10198   SQfD1N#UdfumT
    13  12837   sYIu<E"Fq'^_.
    13  15531   DC8Dg1I$*mUs-
    13  15838   L~*xJBVdG7bu2
    13  15856   $zS+<E"Fq(^_(
    13  15883   L~*xJCVdG7bu2
    13  16064   L~*}JBVdF7bu2
    13  16387   SQf`1N"MZ80LT
    13  16533   1,XU%)5$q[YuO
    13  16588   ff],ceW<0fud&
    13  17316   [V3@2'VgY{KV
    13  17356   kWw#v/P>#apG9
    13  17356   kWw#v/P>#apG9

Wow! "SQf" has been really busy and now almost rules the genepool. "iSx" is second and third, but has lost its number one position to the "RQf" variant of "SQf". "RQf" was introduced in the 12th generation as a child of an "iSx" and "SQf" variant. We see that "kWv" has been knocked almost to the end of the list by more fit candidates. It is very obvious that this pool is no longer random. Patterns are starting to emerge all over it.

By the time we reach generation 40:

    40   3306   RQSw{$-KcfumB
    40   4204   RQf`{$,KdfumT
    40   4229   RQf`|$,KdfumT
    40   4242   RQe`|$,KdfumT
    40   4795   RQSw{$-KdfumT
    40   4971   RQSwz$*K`uSnT
    40   4973   RQSwz$+K`uSmT
    40   4992   RQSwz$+K`uSnT
    40   5017   SQSxz$+K`uSmT
    40   5017   SQSxz$+K`uSmT
    40   5951   (QSxz$+KdfSmT
    40   5985   'QSxz$+K`uSmT
    40   6421   SQfx{$+K`u~(B
    40   6444   TQf`{$+K`u~(B
    40   6489   SQfx{$+KdfS(B
    40   6492   TQf`{$-K`u~(B
    40   7034   SQSxy$+KdfS(B
    40   7617   'iSx{$,K`u~(B
    40   7617   'iSx{$,K`u~(B
    40   7625   'iS`{$,Kdg~(B

The genepool is now almost entirely dominated by the "RQf" variants. Forms of its original parents "SQf" and "iSx" can still be found here and there, although "iSx" is almost entire gone from the pool. An interesting thing is that we can see combinations of letters (bold) that keep reappearing. These are almost like actual genes! Combinations of DNA that work well together and therefor stay in the genepool in that combination. It takes lots of generations to make variants of these genes that are more fit then previous versions.

The next milestone is found in the 67th generation:

    67   3138   RQSw{$+Kd*censored*A
    67   3161   RQSw{$+Kc*censored*A
    67   3176   RQSw{$,KdfulA
    67   3176   RQSw{$+KcfulA
    67   3218   RQSw{$-LcfumA
    67   3222   RQSw{%,KefumB
    67   3237   RQSw{$-LcfvmA
    67   3241   RQSw{$-KcfumA
    67   3241   RQSw{$-KcfumA
    67   3266   RQSw{$-KceumA
    67   3266   RQSw{$-KceumA
    67   3267   RRSw{$-KcfumB
    67   3289   RQSw{%,KefumC
    67   3306   RQSw{$-KcfumB
    67   3306   RQSw{$-KcfumB
    67   3323   RQSw{#-KcfumB
    67   3324   RPSw{$-KdfumB
    67   3331   RQSw{$-KbfumB
    67   3348   RQSw{#-KbfumB
    67   3489   RQSw{$+KdfumA

This marks the first generation where there are no other variations then the RQS one. But immediately, we see the next generation in which a new number one is found:

    68   3119   QQSw{$+Kd*censored*A
    68   3138   RQSw{$+Kd*censored*A
    68   3161   RQSw{$+Kc*censored*A

By the 96th generation, QQS has taken over the top:

    96   3060   QQSw{%+KdhukA
    96   3065   QRSw{%+Kd*censored*A
    96   3081   QQSw{%+KdgukA
    96   3081   QQSw{%+KdgukA
    96   3081   QQSw{%+KdgukA
    96   3096   QQSw{$+KdgukA
    96   3104   QQSw{%+Kd*censored*A
    96   3119   QQSw{$+Kd*censored*A
    96   3119   QQSw{$+Kd*censored*A
    96   3119   QQSw{$+Kd*censored*A
    96   3137   RRSw{$,KdfulA
    96   3137   RRSw{$,KdfulA
    96   3138   RQSw{$+Kd*censored*A
    96   3138   RQSw{$+Kd*censored*A
    96   3138   RQSw{$+Kd*censored*A
    96   3138   RQSw{$+Kd*censored*A
    96   3138   RQSw{$+Kd*censored*A
    96   3142   QQSw{$,Kd*censored*A
    96   3142   QQSw{$+Kc*censored*A
    96   3144   QQSw|$+Kd*censored*A

This is where the race gets boring. Every now and then a new, better, mutation will arise and take over the genepool. Change is slow though, and no big surprised are left. The candidates slowly but surely mutate until the reach something resembling the "Hello, World!" we are looking for in generation 1600:

  1600     19   Hdllo+ Worle%
  1600     20   Hdklo+ Worle%
  1600     20   Hdklo+ Worle%
  1600     20   Hdklo+ Worle%
  1600     20   Hdklo+ Worle%
  1600     20   Hdklo+ Workd%

It takes almost another half-thousand generation to get to the final target:

  1904      0   Hello, World!
  1904      1   Hello, World"
  1904      1   Hello, World"
  1904      2   Hello, Wprld"
  1904      2   Helmo, World"
  1904      2   Helmo, World"
  1904      2   Hdllo, World"
  1904      2   Hello, Worle"

Interesting (if you're boring like me and you like this kind of stuff) facts:

  • It usually takes anywhere between 2500 and 4000 generations to evolve the target.
  • On average, it takes approximately 3100 generations to evolve the target.
  • If we remove the parent DNA mixing and rely solely on mutations, it takes on average 3650 generations to evolve the target.
  • The parent DNA mixing is only really useful in the beginning. In the first generations, it can quickly propel a new mix of DNA to the top of the list, but later on random mutations instead of mixing DNA becomes the main driving force between the evolution. (this doesn't have to be the case in real life evolution, naturally)
  • Sometimes "beneficial" mutations disappear. For instance, the word "World" already appeared in mutation 1469, but was overtaken by other mutations quickly. It was pushed out of the genepool at generation 1486, only to reappear in generation 1659. From then on, it quickly rose to the top and dominated the top 5 positions of the genepool within 10 generations.
  • Facebook
  • Google Bookmarks
  • Digg
  • Twitter
  • Reddit